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Abstract. Using an extension of the density matrix renormalization group method at finite
temperature, we have calculated the magnetic susceptibility of theS = 1 antiferromagnetic
Heisenberg chain with single-ion anisotropy. We investigate the dependence of the Haldane gap
on the anisotropy energy. The results are compared with experimental data for the compound
NENP.

Quantum spin chains have been the subject of many recent theoretical and experimental
studies [1–12]. Here we present our calculations for the thermodynamics of theS = 1
antiferromagnetic Heisenberg model with single-ion anisotropy using a recent extension
of the density matrix renormalization group (DMRG) method. We believe this to be
the first application of this method to produce results which can be directly compared
with experiment. This method allows us to calculate thermodynamic quantities at finite
temperature. In addition the method may be used to estimate the properties of the system
at zero temperature in the thermodynamic limit.

The system that we have considered is described by the Hamiltonian

H = J
∑
i

Si · Si+1+D
∑
i

(Szi )
2 (1)

where the vectorsSi are quantum mechanical spin-one operators. This model is believed to
describe quasi-one-dimensional magnets such as Ni(C2H8N2)2NO2(ClO4), NENP, in which
magnetic ions form chains with negligible interchain interaction. The anisotropic term
arises as a result of the crystal field. As such, a study of this system for various values of
D/J is useful to compare with results from experiments on such materials. Also from a
theoretical point of view, the system is believed to undergo a phase transition in the region
D ≈ J .

The study of quantum spin chains dates back to Bethe’s solution for the spin-half
Heisenberg antiferromagnet [1] which was shown to have a ground state with no long-
range order and to have a gapless excitation spectrum. Higher-spin models, which are
not analytically soluble by the Betheansatz, were believed to have qualitatively similar
properties. Haldane’s conjecture in 1983 [2], that systems with integral spin are gapped,
was therefore met with some surprise. However, both numerical and experimental results

0953-8984/98/100159+07$19.50c© 1998 IOP Publishing Ltd L159



L160 Letter to the Editor

were forthcoming which supported this claim. Exact-diagonalization [3], quantum Monte
Carlo [4], real-space renormalization group [5] and DMR [6] calculations give a value for
the Haldane gap in the isotropic antiferromagneticS = 1 Heisenberg model of 0.4101J .
The gap was also found experimentally in NENP by inelastic neutron scattering [7] and
susceptibility measurements [8].

The ground state of this system is known to be a non-magnetic singlet,ST = 0, while
the first excited state is a triplet withST = 1. One qualitative explanation for the gap in
the excitation spectrum is that proposed by Afflecket al [9] for the S = 1 chain with an
additional biquadratic interaction. In this ‘valence-bond solid’ (VBS), each site on the chain
is occupied by two spin-1/2 variables. The ground state hasS = 1 spins formed by the
bonding of twoS = 1/2 spins from adjacent sites, thus forming dimers. These dimers must
be broken in order to excite the system and Afflecket al rigorously showed that this leads
to a non-zero energy gap between the ground and first excited states of the chain. The VBS
model on a finite lattice leads to the formation of free spins withS = 1/2 at the ends and
these have been experimentally observed in real systems [10] suggesting that this picture is
also applicable at the Haldane point.

The effect of single-ion anisotropy on the Haldane gap has been studied by exact-
diagonalization and quantum Monte Carlo methods by Golinelliet al [11] and the suscept-
ibility by Yamamoto and Miyashita [12]. For small positiveD, the triply degenerate first
excited state is split into a lower-energy doublet withSz = ±1 and a higher-energy state
with Sz = 0. The gap is therefore split into two components, as observed by neutron
scattering experiments on NENP, with the energy difference between the ground and first
excited states decreasing with increasingD. A mean-field study by Chenet al predicted
that the gap vanishes forD = J [13]. For largeD, the ground state is approximately that
with all the spins in theSz = 0 state. Perturbation theory [11] shows that the gap should
increase withD within this region.

The transfer matrix renormalization group method (TMRG), introduced by Bursill,
Xiang and Gehring [14] and then improved by Wang and Xiang [15], is a truncated-
basis scheme for calculating the thermodynamics of one-dimensional interacting quantum
lattice systems. It makes a Trotter–Suzuki decomposition of the Hamiltonian which allows
Nishino’s application of the DMRG algorithm to two-dimensional transfer matrices [16] to
be applied. The method’s first applications were in the study of exactly solvableS = 1/2
models and it proved itself to be an accurate and robust technique for calculating the free
energy in the thermodynamic limit, giving encouraging results down to low temperatures. It
was observed that the low-temperature region was most accurately reproduced when dealing
with systems with an energy gap between the ground and first excited states. As well as
calculating the free energy of the system, the TMRG can also be used to obtain thermal
averages of other operators enabling the internal energy and magnetization to be calculated.
Numerical differentiation then gives the specific heat and spin susceptibility.

As such the TMRG is a competitive computational method in two respects. Foremost,
it allows the calculation of thermodynamic properties over the whole temperature range
with an accuracy at least comparable to that of finite-temperature quantum Monte Carlo
calculations and series expansions. Secondly, analysis of the low-temperature behaviour
of the system can often be used to infer information about the ground state of the system.
Whilst not being as accurate as the exact-diagonalization or zero-temperature QMC methods
for this purpose, the TMRG method does have the advantage of dealing with an infinite
chain rather than a finite one. Exact diagonalization, of course gives the exact energies of
a finite system and errors are only introduced when attempting to extrapolate to the infinite
system. The zero-temperature QMC method allows for larger systems but with reduced
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accuracy. The TMRG method always works in the thermodynamic limit and this may be
of significance when dealing with systems near a critical point where the correlation length
of the system is diverging. Finite-lattice results may become unreliable as the correlation
length becomes comparable with the size of the system. The TMRG method can also be
used to calculate correlation lengths at finite temperature although this has not been done
in the present case.

The TMRG method has been described in detail in references [14] and [15]. In going
from anS = 1/2 to anS = 1 system, the main increase in difficulty is due to the increased
size of the matrices which need to be stored and diagonalized. By making full use of
the symmetries and sparcities of the matrices, we are able to retainm = 70 states in
both the system and environment blocks used to the construct the transfer matrix, which
is comparable to the number of states kept in the previousS = 1/2 calculations. The
superblock transfer matrix is a large, asymmetric matrix whose maximal eigenvalue is
obtained by application of the restarted Arnoldi algorithm.

Figure 1. The magnetic susceptibilityχ(T ) for 0 6 D 6 0.7. The inset shows the low-
temperature region.

For the current model under consideration we have calculated the zero-field spin
susceptibility,χ(T ), for different values ofD (J is set to 1 for all of the calculations).
Figure 1 showsχ(T ) over the region 06 D 6 0.7. Each of the curves shows a peak at
aroundkBT /J = 1. Looking at the low-temperature behaviour,χ(T ) shows an exponential
rise, confirming the presence of an energy gap.

Sorensen and Affleck [17] treated the isotropic case by considering a dilute system of
polarized magnons, which could be treated as a system of non-interacting fermions. Fork

nearπ the energy is given by

E(k) =
√
v2(k − π)2+12 (2)
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Figure 2. The normalized susceptibilityχ/χ0 as a function ofT/1.

wherev is the spin-wave velocity. This produces a density of states given by

g(E) = 1

πv

E√
E2−12

. (3)

The zero-field susceptibility has the low-temperature form

χ(T ) = 1

v

√
21

πT
exp

(
−1
T

)
.

Using the values ofv and1 given in reference [17], there is very good agreement with
the results obtained with the TMRG. Fitting the susceptibility in the anisotropic case to this
form gives an estimate of the gap1 as a function ofD. At the Haldane point(D = 0),
1 is estimated to be 0.415 which is within∼1.5% of the zero-temperature DMRG result
obtained by White and Huse [6]. AsD is increased, the gap is reduced as is expected due to
the splitting of the first excited state of the chain. To try and determine some sort of scaling
for the low-temperature behaviour ofχ(T ), in figure 2 we plotχ(T )/χmax versusT/1.
ForD 6 0.5 the curves coincide at low temperature, thus demonstrating the dominance of
1(D) in determining the susceptibility at low temperatures. In the region 0.8 6 D 6 1.2,
figure 3, the results that our method produces are unable to show conclusively whether the
gap vanishes. At any given iteration,T ∼ 1/M, whereM is the size of the lattice in the
Trotter direction; hence the algorithm tends toT = 0 asymptotically. As the number of
iterations increases, so do the accumulated truncation and numerical errors. Hence, when
the gap is reduced and the exponential behaviour ofχ(T ) is located in an ever-decreasing
region close toT = 0, the results become less reliable.

Figure 4 showsχ(T ) over the region 26 D 6 5. The system again exhibits an energy
gap which increases withD. Figure 5 shows the size of the gap as a function ofD in the
low- and high-D regimes.
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Figure 3. The magnetic susceptibilityχ(T ) for 0.86 D 6 1.2.

Figure 4. The magnetic susceptibilityχ(T ) for 26 D 6 5.

In order to compare with experiment, we consider the compound NENP, for which
susceptibility data from experiments on single-crystal samples are available. In this material
the S = 1 Ni2+ ions form antiferromagnetic chains. The lack of any observed magnetic
ordering down to very low temperatures confirms that the interchain interaction is very weak
in comparison with the intrachain exchange energyJ . The orthorhombic crystal structure
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Figure 5. The energy gap1 as a function ofD in the region 06 D 6 0.7. The inset shows
1 for 26 D 6 5.

Figure 6. Comparison of the susceptibility calculated with the TMRG with the experimental
data of reference [7].

leads to a single-ion anisotropy,D, along the chain direction. NENP hasD/J ≈ 0.2 with
J ≈ 47 K [18] and figure 6 shows the comparison of the zero-field susceptibility measured
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along the chain direction calculated by the TMRG method using these parameters with the
experimental data of Takeuchiet al [8]. The fit is good over the whole temperature range,
being significantly better than that obtained by the QMC method at low temperatures and
comparable to that obtained by series expansion at high temperatures. The TMRG method
would appear to offer an accurate and computationally economical way of modelling the
thermodynamics of real quasi-one-dimensional systems.

In conclusion, we have studied the effect of anisotropy on a one-dimensional spin chain
at finite temperature. The TMRG method is seen to be a competitive one, accurately
reproducing experimental results as well as giving approximate ground-state properties.

The authors would like to thank Dr Robert Bursill and Dr Chris Castleton for useful
discussions. DC gratefully acknowledges an EPSRC studentship.
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